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1 Introduction

Instead of creating a generative model over the whole population to model
exactly the transmission of the infection (which would require the whole contact
graph), we want to define the generative and inference models at the level of
an individual phone. All the information about the encounters contained in the
messages received by the phone serve as observations in our models, and are
sufficient to define all the necessary conditional probability distributions; they
d-separate what happens on Alice’s phone from what happens on other phones.

C S I

E

O

(a) Generative model
p(I, C,O | S,E)

C S I

E

O

(b) Inference model
q(I, C | O,S,E)

Figure 1: Generative & inference models, at the level of an individual phone.
Empty nodes are latent variables, and shaded nodes are observations. Notations
are given in Table 1.

The exact structures of the generative model and the inference model are shown
in Figure 1, with the notations and definitions of the variables in Table 1. In
Section 2 we provide details about the generative model p(I, C,O | S,E), in
Section 3 we detail how the inference model q(I, C | O,S,E) is defined, and
finally in Section 4 we show how we can train both models using data.

1.1 Why not a Dynamic Bayesian Network?

This model is not a Dynamic Bayesian Network; the variables E, I, and O
contain all the information from the past 14 days, and do not depend explicitly
(i.e. in the structure of the network) on the corresponding variables at the
previous timestep. There are multiple reasons why we might not want to use a
Dynamic Bayesian Network as the generative model

1. The temporal aspect required by the (asynchronous) Dynamic Bayesian
Network might not be guaranteed. The observations about the encounters
in E is only a set, and the order of the encounters might not be preserved.
Even if we use a time resolution of a day for the DBN, we might receive
updated risks from multiple days in the past that would not be handled
properly by a DBN.
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Variable Type Description

S – (∗) Static information about the individual (e.g. demographic, pre-
existing medical conditions).

E – (∗) Set of encounter observations for all encounters in the past 14
days (e.g. risk level, approximate repeated encounter, duration).

O
Binary
vector

List of all the symptoms & test results for the past 14 days.

C
Continuous

vector
The contagiousness profile (i.e. contagiousness as a function of
time). This is a static property of the individual, see Section 2.1.1.

I
Binary

vector (∗∗)
The infection events, i.e. which encounters were responsible of
the infection.

Table 1: Notations used throughout the document. (∗) The variables S and E
are not modeled in the generative model (see Section 2), therefore their exact
type is non-essential. (∗∗) The variable I is a binary vector in the generative
model p, but is a Categorical variable in the inference model q.

2. The information contained in E might not be consistent from one day to
the next. For example, since we are running the clustering algorithm every
day on the phone, and the result is sent as part of E, one contact might
end up in different clusters from one day to another. If we can’t ensure
that information in common between two timesteps (i.e. intersection of
the messages in E yesterday and E today), we are losing the advantage
of using DBNs.

3. Defining the conditional probability distributions for the generative model
in Figure 1a is simple enough and follows nicely what is currently imple-
mented in the simulator. While we might be losing some temporal con-
sistency that the DBN would provide, this model can constitute a first
version of the generative model.

2 Generative model

C S I

E

O

The generative model p(I, C,O | S,E), shown in Figure 1a, is a model condi-
tioned on both the static information S and encounters E defined by

p(I, C,O | S,E) = p(C | S) p(I | S,E) p(O | I, C, S,E). (1)

One reason why we choose to define the generative model as a conditional model
is that we consider S and E as observed variables. It would be easy enough
to add both a demographics model p(S) (e.g. changing from one country to
another) and a mobility model p(E | S) on top.
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In the following sections, we detail how these different conditional probability
distributions can be parametrized, both using the parametrization of the current
simulator, as well as a parametric model that can eventually be learned (e.g.
using neural networks).

2.1 Probability of contagiousness profile

C S I

E

O

The latent variable C represents the contagiousness profile, that is the viral load
as a function of time. From this latent variable, it is possible to derive the
contagiousness level using I (e.g. the number of days since infection).

2.1.1 In the simulator

Currently in the simulator, the contagiousness profile is a piecewise linear func-
tion that depends on 5 parameters: the infectiousness onset, the plateau start,
the plateau height, the plateau duration, and the recovery duration. See Figure 2
for an illustration.
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Figure 2: Contagiousness profile. This piecewise linear function represents the
evolution of the contagiousness with time. Time t = 0 corresponds to exposure.

Here, the contagiousness profile is then the equivalent to these 5 parameters

C = {infectiousness onset,plateau start,plateau height,

plateau duration, recovery duration}.

In the simulator, these parameters are specific to an individual and are generated
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according to the following process:

p(infectiousness onset) = N (1 + µio, σ
2
io) code

p(plateau start) = N̄ (µps, σ
2
ps) code

p(plateau duration) = N̄ (µpd, σ
2
pd) code

p(plateau height | age) = U
(

age

200
+ aph,

age

200
+ bph

)
code

p(recovery duration | age) = N̄
(

age

10
+ µrd − 1, σ2

rd

)
, code (2)

where N̄ is a truncated Normal distribution, and U is the uniform distribution.
This defines p(C | S), and the parameters of these distributions are fixed for
now. Note that the contagiousness profile currently only depends on the age of
the individual.

2.1.2 Modeling

To allow more flexibility, we can parametrize the different distributions defined
in Equation 2 by neural networks, with all the static information S about the
individual. This would allow us to have more control over the way the con-
tagiousness profile is defined, and could be interesting for epidemiologists; for
example, how does the contagiousness profile change with age, sex, or pre-
existing conditions. Moreover to enforce having positive quantities, we can use
log-Normal distributions instead of truncated Normal distributions. If we call
θ all the parameters of the different neural networks, this becomes:

p(infectiousness onset | S) = logN (µio(S; θ), σ2
io(S; θ))

p(plateau start | S) = logN (µps(S; θ), σ2
ps(S; θ))

p(plateau duration | S) = logN (µpd(S; θ), σ2
pd(S; θ))

p(plateau height | S) = U(aph(S; θ), bph(S; θ))

p(recovery duration | S) = logN (µrd(S; θ), σ2
rd(S; θ)), (3)

where logN is a log-Normal distribution. Even though we could have a general
parametrization (not necessarily piecewise linear) of the contagiousness profile
here, we are using domain knowledge from epidemiologists to impose structure1.

2.2 Probability of infection

C S I

E

O

The latent variable I is a vector of binary random variables that represents
when the individual got infected (and if they even got infected). From this
latent variable, it is possible to derive the number of days since infection. The

1Alternatively, we could parametrize C as a vector of 15 continuous values, one for the viral
load of each day. We would lose the structure (rising and falling edge) and interpretability
though.
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vector I contains n + 14 elements, where n is the number of contacts in the
past 14 days (i.e. the size of E), the “+ 14” represents unmeasured infections
in the past 14 days. Note that being not infected corresponds to I being the
zero vector.

The observation of encounters E contains information about the different con-
tacts in the past 14 days. In particular, E contains for all contacts:

1. The contagiousness level of the contact. Note that we don’t observe the
true contagiousness level here, but only a quantized version of the conta-
giousness level (this is the risk level).

2. An approximate value of whether or not the contact is a repeated contact,
using the clustering algorithm on the phone.

3. An approximate value of the distance and duration of the encounter.

4. Eventually, this will also contain coarse information about the location

2.2.1 In the simulator

Let It, with t ≤ n, be the binary random variable representing the event that the
encounter Et was the encounter that infected the individual. In the simulator,
the probability of It is defined by

p(It = 1 | Et, S) =

{
p if contact close enough & long enough
0 otherwise

(4)

The decision if the contact is close enough and long enough can be made using
the information of distance and duration of the encounter contained in Et (ap-
proximate value); the thresholds are handcrafted. The probability of infection
p also depends on information from Et, and is defined by

p = contagiousness of contact× proximity factor.

There is also a probability of infection from the environment, which can be mod-
eled once we have access to coarse location information in Et. Unmeasured
infection is handled in the simulator through contacts with people who might
not have the app, however there is no simple p(It | S) for t > n.

2.2.2 Modeling

We can replace the probability of infection by the output of a neural network,
which depends on all the observed information about the encounter Et and the
static information S.

p(It = 1 | Et, S) = σ(f(Et, S; θ)) if t ≤ n
p(It = 1 | S) = σ(g(S; θ)) if t > n (i.e. unmeasured infection) (5)
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where f and g are neural networks with parameters θ. Contrary to inference,
the probability of infection It only depends on Et (and S) in the generative
model, and not the full E; in other words, no need to use a transformer in the
generative model. Moreover, we also assume that the unmeasured infections It
for t > n are conditionally independent from all other It. The full conditional
probability is therefore

p(I | S,E) =

n∏
t=1

p(It | Et, S)︸ ︷︷ ︸
measured

14∏
k=1

p(In+k | S)︸ ︷︷ ︸
unmeasured

. (6)

Variable Type Description

Ī Binary
The event “is infected?”, where Ī = 0 means that the individual
was not infected.

D Categorical
The number of days since infection, taking values d ∈ [1, 14],
conditioned on the individual being infected (Ī = 1).

Table 2: Notations for some useful auxiliary variables that can be derived from
I and E.

From this conditional probability distribution, we can derive some useful distri-
butions, such as the probability of not being infected

p(Ī = 0 | S,E) = p(I = 0 | S,E)

=

n∏
t=1

p(It = 0 | Et, S)

14∏
k=1

p(In+k = 0 | S), (7)

where Ī is the binary variable “is infected?”, as well as the probability of the
day of infection d ∈ [1, 14], given that the individual was infected (assuming a
uniform prior over the days)

p(D = d | Ī = 1, S, E) ∝

1− p(In+d = 0 | S)

n∏
t=1

p(It = 0 | Et, S)1(Et on day d). (8)

2.3 Probability of symptoms & test results

C S I

E

O

The observed variable O is a vector of many binary2 variables representing the
onset of different symptoms (e.g. cough, fever) and test results over the past 14
days. For the generative model, we need to define p(O | I, C, S,E).

2Should be ternary variables, to handle “not available”.
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Why does O depend on E? As we’ll see in the following sections, it is more
convenient to define the probability of symptoms & test results conditioned
on the event of being infected Ī and the number of days since infection D
(if the individual was infected). While the variable I contains almost all the
information required to compute Ī and D, a priori I does not have any notion
of “time”; I is only a set of binary events, the order of which might be arbitrary.
To do the mapping between the elements of I and the corresponding days, we
need the information from E. The dependency of O on E is then only purely
technical, and can be safely ignored – it has no impact on the generative model.

2.3.1 In the simulator

Symptoms The different symptoms modeled at the moment in the simulator
are shown in Figure 3, together with their dependencies.

Symptoms

Fever
[SY-4]

Chills
[SY-15]

Gastro

Diarrhea
[SY-7]

Nausea /
Vomiting
[SY-8]

Sneezing
[SY-6]

Cough
[SY-2]

Fatigue
[SY-10]

Unusual

Hard time
waking up
[SY-11]

Headache
[SY-9]

Confused
[SY-17]

Lost con-
sciousness
[SY-18]

Runny nose
[SY-14]

Sore throat
[SY-12]

Severe chest
pain

[SY-16]

Trouble
breathing
[SY-3]

Light
trouble

breathing

Mild trouble
breathing

Moderate
trouble

breathing

Heavy
trouble

breathing

Loss of taste
[SY-5]

Aches
[SY-13]

Figure 3: List of the symptoms in the simulator, with the corresponding feature
IDs from the feature list document.

The symptoms and their severity are generated depending on the progression of
the disease. The infection is decomposed in 6 different phases, which are shown
in Figure 4: the pre-symptomatic period, prior to any symptom onsets, and
phases from 1 to 5, which dictate the severity of the symptoms. The symptoms
also show some progression, so that the symptoms at day d might depend on
those at d− 1 (e.g. the same symptom, but with a different severity).
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ta
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es
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Time

Phase
0

Pre
sympt.

Phase
1

Phase
2

Phase
3

Phase
4

Phase
5

Figure 4: Progression of the symptoms in phases, with the contagiousness profile
superimposed. The color represents the severity of the phase.
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Without detailing its full computation, the probability of the symptoms has the
following form

p(O | Ī , D,C, S) = p(O1 | Ī , D,C, S)

15∏
d=2

pd(Od | O1:d−1, Ī, D,C, S), (9)

where the different conditional probability distributions generally depend on the
age and pre-existing conditions (from the static information S), the contagious-
ness profile C for the definition of the phases, and the number of days since
infection D. Recall that Ī is the binary random variable “is infected?”; we have
seen in Section 2.2.2 that it is possible to derive the variables Ī and D from I.

Test results The test result depends on whether the individual is infected or
not, and a probability of false positive, based on the nature of the test.

p(test result = 1 | Ī) =

{
1− p if the individual is infected (Ī = 1)
0 otherwise

(10)

where p = 0.1 is a fixed value for the unique test available in the simulator at
the moment (lab test).

2.3.2 Modeling

Since we want to model the progression day-by-day of the symptoms, it is more
natural to define the conditional probability distribution on the number of days
D since infection (and if the individual was infected Ī), similar to the simulator,
instead of directly p(O | I, C, S,E).

Symptoms Following the way symptoms are produced in the simulator, we
can go even further and define the probability of having some symptom O not
on the number of days D since infection, but on the phase F . In other words,
we need to model both

p(O | Ī = 0, S, E)︸ ︷︷ ︸ and p(O | F = f, Ī = 1, S, E)︸ ︷︷ ︸
TODO: More details about how to model the symptoms.

3 Inference model

C S I

E

O

The inference model q(I, C | O,S,E), shown in Figure 1b, is the model respon-
sible for making approximate inference (on the phone), based on observations.
This is defined by

q(I, C | O,S,E) = q(C | O,S,E) q(I | O,S,E). (11)

In the following sections, we detail how these two conditional probability distri-
butions can be represented as parametric models that can be eventually learned
(e.g. using neural networks).
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p(F | Ī = 1, C, S,E)

Days

A
g
g
reg

a
tio

n

Figure 5: Probability distribution of being in phase F . This is a categorical
distribution over the 6 possible phases of the disease. The probabilities are
computed by aggregating the probabilities for all days in the phase.

3.1 Embedding of the observations

To encode the different observations available for the inference model, we first
embed O and S using 2 separate embedding functions. The encounters E
are also embedded, with different embedding functions for time (day of en-
counter), duration, approximate repeated encounters, and risk levels. All these
embeddings are then concatenated into one large embedding matrix X of size
n× embedding size.

3.2 Inference on contagiousness profile

C S I

E

O

Since the variable E, and therefore the embedding X, have variable length,
we need to use a neural network architecture that can handle variable-length
input. One option is to use a Transformer. Similar to the way we modeled p(C |
S) in Section 2.1.2, we can take inspiration from Equation 3 and parametrize
the inference model for the contagiousness profile q(C | O,S,E) as separate
distributions parametrized with Transformers taking as input the embedding
matrix X defined in Section 3.1, and returning scalar values for the mean and
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variance of the different distributions.

q(infectiousness onset | O,S,E) = logN (µio(X;φ), σ2
io(X;φ))

q(plateau start | O,S,E) = logN (µps(X;φ), σ2
ps(X;φ))

q(plateau duration | O,S,E) = logN (µpd(X;φ), σ2
pd(X;φ))

q(plateau height | O,S,E) = U(aph(X;φ), bph(X;φ))

q(recovery duration | O,S,E) = logN (µrd(X;φ), σ2
rd(X;φ)). (12)

In practice, we can have a single Transformer returning a vector of size 5×2 for
all the parameters at once, to leverage parameter sharing; the Transformer can
also be shared with the one in Section 3.3. In order to send the risk level of an
individual to the contacts, we need to compute the value of the contagiousness.
We will see in Section 3.4 that it is possible to compute this value based on both
C and I inferred by the inference model q.

3.3 Inference on the infection

C S I

E

O

Like in Section 3.2, we use a Transformer architecture to handle the variable-
length input X. More precisely, we can use a Set Transformer, which is an
architecture that is capable of processing sets of objects. The output of the
Set Transformer is a vector of size n + 15, where n is the number of messages
(length of E), with an additional 14 values for the unmeasured infections (one
for each of the past 14 days, see Section 2.2), and 1 value if there was no infection.

Using the embedding X, we can define q(I | O,S,E) as a Categorical dis-
tribution over the output of the Set Transformer. Note that we are using a
Categorical distribution here instead of a vector Bernoulli variables (as in the
generative model) to simplify training; see Section 4.1.1.

q(I | O,S,E) = Categorical
(

softmax(SAB(X;φ))︸ ︷︷ ︸
n+ 15 values

)
, code (13)

where SAB corresponds to the Set Transformer architecture, with parameters
φ. Note that the parameters φ should also include the parameters of the em-
bedding functions. By convention, index 0 corresponds to no infection, indices
t ∈ [1, n] to measured infections with a corresponding Et, and t > n to unmea-
sured infections, to match the notations in Section 2.2.

Similar to Section 2.2.2, we can also derive useful distributions on the event of
being infected Ī and the number of days since infectionD (if there was infection);
see Table 2 for reference. Since q(I | O,S,E) is a Categorical distribution, this
derivation is even simpler, with the probability of not being infected being

q(Ī = 0 | O,S,E) = q(I = 0 | O,S,E), (14)
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and the probability of the day of infection d ∈ [1, 14], given that the individual
was infected

q(D = d | Ī = 1, O, S,E) = q(I = n+ d | O,S,E)

+

n∑
t=1

q(I = t | O,S,E) · 1(Et on day d). (15)

WIP: Furthermore, the probability of being infected by an unmeasured in-
fection on day d is proportional to the probability of being infected by one of
the encounters on day d, as well as the percentage of the population that is
providing information in the shape of S,E,O (the adoption rate pa).

q(I = n+ d | O,S,E) ∝ pa

n∑
t=1

q(I = t | O,S,E) · 1(Et on day d).

However, if the sample of the population that uses the app is not randomly
selected from the population, then the proportionality relationship above will
have to include some form of sample selection bias correction, since the proba-
bility of being infected from a user inside the app might be different from a user
outside the app, even without interventions.

3.4 Inference on contagiousness

While we are doing inference on the whole contagiousness profile (via the 5
parameters of the piecewise linear function), we need to also be able to perform
inference on the value of the contagiousness to compute the risk level (which is
a quantized version of the contagiousness). This risk level is later sent to other
users. From both C and I (via Ī and D), it is possible to compute this value of
the contagiousness c(I, C).
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Figure 6: Computation of the average contagiousness value per day c̄d(C) from
the contagiousness profile C.

Figure 6 shows how to compute the average contagiousness value per day from
the contagiousness profile C. For each day d, we then have the corresponding
value of the contagiousness c̄d(C) (Figure 6, right). To get today’s contagious-
ness value, we can simply take the average value of the contagiousness based on
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the number of days D since infection (if the individual was infected); recall that
the value of D can be inferred from I and E, see Section 3.3.

c(I, C) =

{
0 if Ī = 0 (i.e. no infection)
c̄D(C) otherwise

(16)

3.4.1 Risk level & average contagiousness

To produce a risk level for today, we can simply take a sample I and C from
q(I, C | O,S,E), and compute the contagiousness value based on Equation 16.
However this value might have high variance, depending on the inference model.
To mitigate this variance issue, we can instead compute the risk level based on
the average contagiousness over I and C:

Risk level = quantize
(
Eq(I,C|O,S,E)[c(I, C)]︸ ︷︷ ︸

Equation 20

)
. (17)

Average over I To compute the expectation over the infectiousness I, we
can use the distribution over D from Equation 15:

Eq(I|O,S,E)

[
c(I, C) | C

]
=

14∑
d=1

q(D = d | Ī = 1, O, S,E) · c̄d(C). (18)

Average over C For d fixed, the distribution of c̄d(C) can be very complex
due to the distribution over C (i.e. a distribution over piecewise linear func-
tions). We can estimate the expectation over the contagiousness profile C using
Monte-Carlo estimation:

Eq(C|O,S,E)

[
c̄d(C)

]
≈ 1

m

m∑
j=1

c̄d(Cj) Cj
iid∼ q(C | O,S,E). (19)

Overall, this means that the average contagiousness (to be quantized for the
risk level) can be estimated with

Eq(I,C|O,S,E)[c(I, C)] ≈ 1

m

m∑
j=1

14∑
d=1

q(D = d | Ī = 1, O, S,E) · c̄d(Cj). (20)

3.4.2 Risk level updates

In the previous section, we saw how to compute today’s risk level. However
since we have access to the full contagiousness profile, it is possible to compute
the contagiousness (and therefore the risk level) at any point in the past by
shifting Equation 20. The risk level for δ days in the past is

Risk level(−δ) = quantize

[
1

m

n∑
j=1

14∑
d=δ+1

q(D = d | Ī = 1, O, S,E) · c̄d−δ(Cj)
]

Cj
iid∼ q(C | O,S,E). (21)
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We can use this risk level to send an update message to an encounter in the past,
based on an updated estimate of the contagiousness, to refine the estimation of
the risk for the other user.

4 Training

The app on each phone will get observations (S,E,O) every day; recall that E
and O contains all the observations of encounters and symptoms / test results
for the past 14 days. Based on these observations, we want to learn both the
parameters θ of the generative model pθ(I, C,O | S,E) and the parameters φ of
the inference model qφ(I, C | O,S,E).

4.1 Amortized variational inference

Similar to Variational Autoencoders (VAEs), we can use amortized variational
inference to jointly train the generative and inference models. We can write the
Evidence Lower-Bound (ELBO) for the conditional log-likelihood log p(O | S,E)
(recall that this is a conditional model):

log pθ(O | S,E) ≥ Eqφ(I,C|O,S,E)

[
log pθ(O | I, C, S,E)

]
−KL

(
qφ(I, C | O,S,E) ‖ pθ(C | S)pθ(I | S,E)

)
(22)

The ELBO contains two terms, the expected log likelihood and the KL divergence,
both of which we will detail further in the following sections.

4.1.1 Expected log-likelihood

The reason why we chose a Categorical distribution to model q(I | O,S,E) in
Section 3.3 was to simplify the computation of the expected log-likelihood term
in the ELBO; when summing over I, we only have a number of terms linear in
n, as opposed to exponential in n with a vector of Bernoulli variables. Since
the probability of symptoms & test results was defined in terms of Ī and D in
Section 2.3.2, we can write the expected log-likelihood as

Eqφ(I,C|O,S,E)

[
log pθ(O | I, C, S,E)

]
(23)

= qφ(Ī = 0 | O,S,E)Eqφ(C|O,S,E)

[
log pθ(O | Ī = 0, C, S)

]
+

14∑
d=1

qφ(D = d | Ī = 1, O, S,E)Eqφ(C|O,S,E)

[
log pθ(O | D = d, Ī = 1, C, S)

]
,

where the distributions q(Ī = 0 | O,S,E) and q(D = d | Ī = 1, O, S,E) are
defined in Equations 14 and 15 respectively.

Reparametrization trick We can use the reparametrization trick to esti-
mate, with Monte-Carlo, the remaining expectations over q(C | O,S,E) in
Equation 23.
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• Log-Normal distribution: We can apply the reparametrization trick
to compute the expectation of a function f (with parameters θ) over a
log-Normal distribution q = logN (µ, σ2) with

Eq(z)
[
f(z ; θ)

]
= Eε∼N (0,1)

[
f(exp(µ+ σε) ; θ)

]
. (24)

• Uniform distribution: We can apply the reparametrization trick to
compute the expectation of a function f (with parameters θ) over a Uni-
form distribution q = U(a, b) with

Eq(z)
[
f(z ; θ)

]
= Eε∼U(0,1)

[
f(a+ (b− a)ε ; θ)

]
. (25)

4.1.2 KL divergence

Given the structure of the inference model (see Figure 1b), the KL divergence
term can be further decomposed into two separate terms for I and C:

KL
(
qφ(C | O,S,E)qφ(I | O,S,E) ‖ pθ(C | S)pθ(I | S,E)

)
(26)

= KL
(
qφ(C | O,S,E) ‖ pθ(C | S)

)
+ KL

(
qφ(I | O,S,E) ‖ pθ(I | S,E)

)
KL divergence in C Recall that the random variable C represents the con-
tagiousness profile, and consists of 5 continuous values; see Section 2.1.2 for
details. Since these 5 random variables are conditionally independent, we can
even further decompose the KL-divergence in C into 5 separate terms, one for
each univariate variable. Since the distributions are either (truncated) Normal
or Uniform distribution, we can compute each term in closed form.

• Log-Normal distributions: The KL-divergence between two (univari-
ate) log-Normal distributions q = logN (µ1, σ

2
1) and p = logN (µ2, σ

2
2) is

given by

KL(q ‖ p) = log
σ2
σ1

+
(µ1 − µ2)2 + σ2

1 − σ2
2

2σ2
2

. (27)

• Uniform distributions: The KL-divergence between two Uniform dis-
tributions q = U(a, b) and p = U(c, d) is finite only if c ≤ a < b ≤ d and is
given by

KL(q ‖ p) = log
d− c
b− a

. (28)

KL divergence in I Since the variable I is a discrete random variable, the
KL divergence can be written explicitly as a weighted sum

KL
(
qφ(I | O,S,E) ‖ pθ(I | S,E)

)
= qφ(I = 0 | O,S,E) log

qφ(I = 0 | O,S,E)

pθ(I = 0 | S,E)

+

n+14∑
t=1

qφ(I = t | O,S,E) log
qφ(I = t | O,S,E)

pθ(It = 1 | S,E)
(29)

+
(
1− qφ(I = 0 | O,S,E)

)
·
[

log

n+14∑
t=1

pθ(It = 1 | S,E)− log
(
1− pθ(I = 0 | S,E)

)]
,
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where p(I = 0 | S,E), given in Equation 7, is the probability of not being
infected. Recall that in the generative model, I is a vector of binary variables,
whereas in the inference model, I is a categorical random variable, hence the
distinction between “It = 1” in p and “I = t” in q. The last term in Equation 29
corresponds to the normalization over p, and assumes a uniform prior of infection
over the different encounters (measured and unmeasured).

4.1.3 Training objective

Since we want to maximize the conditional log-likelihood log p(O | S,E), we can
maximize the ELBO with respect to jointly the parameters of the generative
model θ and those of the inference model φ

min
θ,φ
L(θ, φ;D), (30)

whereD = {Oi, Si, Ei}Ni=1 is a dataset of observations (from either the simulator,
or from the real world), and the objective is defined as

L(θ, φ;D) =
1

N

N∑
i=1

[
KL
(
qφ(I, C | Oi, Si, Ei) ‖ pθ(C | Si)pθ(I | Si, Ei)

)︸ ︷︷ ︸
Section 4.1.2

− Eqφ(I,C|Oi,Si,Ei)
[

log pθ(Oi | I, C, Si, Ei)
]︸ ︷︷ ︸

Section 4.1.1

]
. (31)

4.2 Wake-sleep algorithm

The Wake-sleep algorithm can be viewed as an approximate implementation of
the Expectation Maximization algorithm (EM). It consists in two phases: the
wake phase, and the sleep phase.

• Wake phase: From the observations O, S, and E, sample the latent
variables I and C from the current inference model. Then use this fully
observed data (I, C,O, S,E) to maximize the likelihood of the generative
model p(I, C,O | S,E).

• Sleep phase: This time only based on the observations S and E, sample
“fantasy” data from the current generative model p(I, C,O | S,E). Then
use this fully observed data (I, C,O, S,E) to maximize the likelihood of
the inference model q(I, C | O,S,E).

The wake and sleep phases are applied iteratively. In the following sections, we
will detail the implementation of both phases, based on a dataset of observations
D = {Oi, Si, Ei}Ni=1.

4.2.1 Wake phase

The wake phase operates in two steps: first the data is completed using the
inference model, and then the parameters of the generative model are optimized.
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1. For every datapoint (Oi, Si, Ei), we sample m possible completions from
the current inference model qφ(t)(I, C | O,S,E):

Ii,j , Ci,j
iid.∼ qφ(t)(I, C | Oi, Si, Ei). (32)

2. Using the fully observed data (Ii,j , Ci,j , Oi, Si, Ei), we can maximize the
log-likelihood of the completed data wrt. the different parameters of the
generative model:

θ(t+1) = arg max
θ

1

Nm

N∑
i=1

m∑
j=1

log pθ(Ii,j , Ci,j , Oi | Si, Ei). (33)

4.2.2 Sleep phase

The sleep phase also operates in two steps: first “fantasy” data is generated
from the generative model, and then the parameters of the inference model are
optimized.

1. Since we have a generative model conditioned on S and E, for every dat-
apoint (Si, Ei), we sample m possible datapoints from the current gener-
ative model pθ(t+1)(I, C,O | S,E):

Ii,j , Ci,j , Oi,j
iid.∼ pθ(t+1)(I, C,O | Si, Ei). (34)

2. Using the fully observed data (Ii,j , Ci,j , Oi,j , Si, Ei), we can maximize the
log-likelihood of the latent variables I and C wrt. the parameters of the
inference model:

φ(t+1) = arg max
φ

1

Nm

N∑
i=1

m∑
j=1

log qφ(Ii,j , Ci,j | Oi,j , Si, Ei). (35)

5 Mobility model

In order to build a fully functional simulator, we need to add a mobility model on
top of the generative model from Figure 1a and Section 2. This mobility model,
p(E | S), is responsible for generating encounters in E. To enable efficient
sampling for a large population (e.g. a whole country like Canada, with 30M
people), we propose a model which operates at two different levels.

5.1 Mobility model within a central zone

At the level of a single zone, we can run an agent-based simulation over the
whole population within that zone. Let’s say that we place ourselves in a zone
Z, with a population of n users. The goal here is to create a contact graph
between these n users that can later be used to sample the encounters inside Z.
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We model this by independently sampling the edges of the graph according to
the following probability distribution over contacts Yuv

p(Yuv | Nuv, Ru, Rv, Su, Sv, Hu, Hv, Z), (36)

conditioned on information from both users u and v. The notations are defined
in Table 3. To define this probability distribution though, we would need access
to joint observations from both u and v, which we do not have for privacy
reasons; we only have access to the risk level of the other user, as well as the
number of repeated encounters, through the messages received and the output
of the clustering algorithm. Moreover, the location data Z and medical data
H and S are stored in different records; there is no joint observations between
location and medical data either, to avoid any identification.

Variable Type Description

Yuv Binary
The contact event between users u and v. Yuv = 1 means there
has been a contact between u and v; this is symmetric (Yuv = Yvu).

Nuv Categorical
The number of repeated encounters between u and v, as esti-
mated by the clustering algorithm.

Su –
Static information about user u (e.g. demographic, pre-existing
medical conditions). Same as variable S from Section 2.

Ru Categorical
The current risk level of user u. This is the quantized version of
the contagiousness returned by the inference model (see Section 3.4)

Hu
Integer
matrix

The historical data of user u for the past 14 days. This is a
matrix containing the number of encounters with specific risk levels
and number of repetitions.

Table 3: Notations for the mobility model within a central zone. Some of
these notations are also used in the mobility model with neighbor zones (see
Section 5.2).

As such, we need to estimate the probability distribution from Equation 36
with quantities we can eventually learn from data. We propose the following
decomposition to mitigate bias in our estimation:

p(Yuv | Ru, Rv, Su, Sv, Hu, Hv, Z) ≈ (37)[
q(Yuv | Nuv, Ru, Su, Hu, Rv) · q(Yuv | Nuv, Rv, Sv, Hv, Ru)︸ ︷︷ ︸

Section 5.1.2

· q(Yuv | Z,Ru, Rv)︸ ︷︷ ︸
Section 5.1.3

]1/3
.

5.1.1 Historical data

A strong predictor of the mobility pattern comes from historical data of encoun-
ters the user had in the past 14 days. This data is derived from the observations
of encounters E stored on the phone of the user. What we are interested in is
aggregated statistics about the encounters of user u, broken down by
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1. Risk level r, for all the possible risk levels (currently 16 values). The risk
levels are contained in the messages received by u

2. Number of repetitions m, categorized by frequency of encounters in the
past 14 days. For example, we can use 5 categories: 1 encounter (non-
repeated encounter), [2, 4) encounters, [4, 8) encounters, [8, 16) encounters,
and 16+ encounters. The number of repetitions can be approximated
using the clustering algorithm of the messages received.

We can therefore create a matrix histogram Hu, whose entries Hu(r,m) contains
the number of encounters of risk r, m with repeated encounters, in the past 14
days. In the following sections, we will assume that the matrix Hu has size 16×5.

To build this histogram, we need to call the clustering algorithm. However the
clustering algorithm might cluster together encounters with varying risk levels
(e.g. I met someone twice, once she was risk level 2, and the second time she
was risk level 4). Should these clusters be broken down further by risk level?

State of a zone We might have some users with very little data available (e.g.
a new user), for which Hu might not be informative enough. We can aggregate
the historical data of all the users in the zone Z to estimate its state, i.e. what
is the typical mobility pattern for users in Z.

H(Z) =
∑
u∈Z

Hu. (38)

5.1.2 Probability of contact given user information

Given only data for user u, we want to model the probability that u has a
contact with another user v with specific risk levels and number of repeated
encounters. In other words, we want to model

q(Yuv | Nuv, Ru, Su, Hu, Rv). (39)

Alternatively, we can model the probability of contact for all possible combi-
nation of risk levels and number of repetitions at once, and then select the
entries we are interested in. Concretely, we want to model Y as a matrix of
binary values, where Y has the same size as the historical data Hu (16 × 5,
see Section 5.1.1). We can use a neural network with inputs Ru, Su and Hu

(normalized histogram), with parameters θ:

q(Y = 1 | Ru, Su, Hu) = σ
(
f(Ru, Su, Hu ; θ)

)
. (40)

Since we have matrix inputs and outputs, both having the same size, we can
use a convolutional neural network as our function f . The risk level Ru and
additional static information Su can be added as separate channels to the input
Hu. Figure 7 shows this convolutional network, with its inputs and outputs.
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Su Ru Hu Convolutional neural network
f(· ; θ)

p(Y)

Figure 7: Schematic view of the convolutional neural network architecture used
for the probability distribution in Equation 40.

To obtain the probability distribution of u having a contact with v, given the
risk level r and number of repetitions m of v (Equation 39), we can select the
corresponding entry in Y:

q(Yuv = 1 | Nuv = m,Ru, Su, Hu, Rv = r) = q(Y[r,m] = 1 | Ru, Su, Hu). (41)

Training We can train this neural network using supervised learning (maxi-
mum likelihood) on observations available on the phone of each user u. More
precisely, we can gather a dataset D = {Su, Ru, Hu,Yu}u for all users (from
not only zone Z, but from all the zones).

Here, we have to distinguish more precisely the parts of historical data is treated
as input and output; both of these can be derived from the observations in E (i.e.
the messages received on the phone, and the subsequent result of the clustering
algorithm)

• The input Hu of the neural network contains the historical data for the
past 14 days, as described in Section 5.1.1, excluding today’s encounters.

• The target Yu of the neural network is a matrix of binary outcomes of
today’s encounters. In other words, Yu[r,m] = 1 if user u has been in
contact today with at least one user with risk level r and repetition m.

The loss function used for supervised learning is simply the binary cross entropy
between the output of the neural network and the target Yu

L(θ ; D) =
∑
u

cross-entropy(Yu, Ŷu) (42)

where Ŷu = σ
(
f(Ru, Su, Hu ; θ)

)
.

5.1.3 Probability of contact given the zone

TODO: Complete this section
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5.2 Mobility model with a neighbor zone

To model mobility between different zones, we also have to model how users
behave outside of their central zone. Contrary to Section 5.1, where we were
running a full agent-based model at the level of the central zone (with a contact
graph, and users u and v being real agents from the zone), here we want to
model an encounter between a user u and a generic (fictitious) agent v with a
specific risk level Rv and number of repetition Nuv in another zone

p(Yuv | Nuv, Ru, Rv, Su, Sv, Hu, Lu, Zu, Zv, Zcontact). (43)

Additional notations are defined in Table 4. For reasons similar to the ones men-
tioned in Section 5.1, namely the separation of the records for privacy reasons,
we will estimate this probability distribution using a decomposition similar to
Equation 37

p(Yuv | Nuv, Ru, Rv, Su, Sv, Hu, Lu, Zu, Zv, Zcontact) ≈ (44)[
q(Yuv | Nuv, Ru, Su, Hu, Rv)︸ ︷︷ ︸

Section 5.1.2

· q(Yuv | Zu, Zcontact)︸ ︷︷ ︸
Section 5.2.1

· q(Yuv | Nuv, Rv, Zv)︸ ︷︷ ︸
Section 5.2.2

· q(Yuv | Zv, Zcontact)︸ ︷︷ ︸
Section 5.2.1

]1/4
.

The first term of this decomposition has already been described in Section 5.1.2
in the case of mobility modeling within a central zone.

Variable Type Description

Yuv Binary
The contact event between user u and a fictitious user v, defined
by its risk level and number of repeated encounters with u.

Zu –
The central zone of user u. This typically corresponds to the zone
where u lives.

Zcontact –
The zone where the contact between u and v happens. This can
be different from the central zones of u and v.

Table 4: Additional notations used for the mobility model with a neighbor zone.

5.2.1 Probability of transition between zones

To model the probability that user u will move from its central zone Zu to
Zcontact, we can use aggregated location data contained in the records for zone
Zu to estimate the transition probability distribution

q(Yuv | Zu, Zcontact). (45)

For now, Zu and Zcontact are taking values in a list of zone IDs. Eventually, we
can have a zone embedding representing each zone, based on information about
the zone (e.g. demographics, average risk, location).
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5.2.2 Probability of fictitious agent

Since we are not precisely monitoring the other user v whom u has an encounter
with in another zone (i.e. there is no explicit contact graph involving u and
v, unlike in the central zone in Section 5.1), we have to define a probability
distribution that this fictitious user v exists, as defined by its risk level Rv and
the number of repeated encounters Nuv with u

q(Yuv | Nuv, Rv, Zv). (46)

For this, we can use aggregated statistics about the risk levels in zone Zv, as
described in Section 5.1.1 and Equation 38. Similar to how we used a convolu-
tional neural network in Section 5.1.2, we can define the probability of Y for all
risk levels and number of repetitions

q(Y | Zv) = σ
(
g(H(Zv) ; θ)

)
, (47)

where g is a CNN with parameters θ, and H(Zv) is the aggregated histograms
(normalized) for all users from zone Zv. We can also train this neural network
using supervised learning.
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Appendix
Version of the code All the links to existing code in the document are based
on the following versions of the projects:

• covid p2p simulation: 62c7e41

• covid p2p risk prediction: 8cf2e28

A Symptoms generation in the simulator
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Figure A.1: Logic of the severity of the symptoms in the simulator, based on the
phases defined in Figure 4. Diamond green nodes are (deterministic) decision
nodes, and round blue nodes are stochastic nodes (“yes” with probability p).
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https://github.com/pg2455/covid_p2p_simulation/compare/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800...master
https://github.com/mila-iqia/covid_p2p_risk_prediction/compare/8cf2e28b9a115ce5a67efbd72b373fd26a383b79...master
https://github.com/pg2455/covid_p2p_simulation/blob/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800/utils.py#L640-L648
https://github.com/pg2455/covid_p2p_simulation/blob/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800/utils.py#L568-L572
https://github.com/pg2455/covid_p2p_simulation/blob/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800/utils.py#L719-L727
https://github.com/pg2455/covid_p2p_simulation/blob/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800/utils.py#L798-L803
https://github.com/pg2455/covid_p2p_simulation/blob/62c7e416c803ed9f00e8f561b6bdb69a2d9ff800/utils.py#L863-L866

