
Hybrid Models for Learning to Branch

Prateek Gupta∗, Maxime Gasse, Elias B. Khalil,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

Huawei London Research Center, Nov. 26th 2021

1/57



Resources

Paper: https:
//arxiv.org/abs/2006.15212

Code: https://github.com/
pg2455/Hybrid-learn2branch Slides: www.pgupta.info/talks

QR Codes generated via https://www.qr-code-generator.com/
2/57

https://arxiv.org/abs/2006.15212
https://arxiv.org/abs/2006.15212
https://github.com/pg2455/Hybrid-learn2branch
https://github.com/pg2455/Hybrid-learn2branch
www.pgupta.info/talks
https://www.qr-code-generator.com/


To enable CPU-based discrete optimization solvers to use
deep learning models without sacrificing runtime performance.

3/57



To enable CPU-based discrete optimization solvers to use
deep learning models without sacrificing runtime performance.

3/57



Outline

Problem formulation

Our approach: Hybrid Models

Conclusion

4/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

5/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

6/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients

I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

7/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,

l ≤ x ≤ u,
x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides

I l, u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

7/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds

I p ≤ n integer variables

NP-hard problem.

7/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

7/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

7/57



Applications

Combinatorial Auctions

Facility location-Allocation

Maximum Indendent Set

Set Covering

and many more ...

8/57



Mixed-Integer Linear Program (MILP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p .

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds
I p ≤ n integer variables

NP-hard problem.

9/57



Mixed-Integer Linear Program (MILP)

Image credit: Maxime Gasse
10/57



Linear Program (LP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable
◦ Yields lower bounds to the original MILP

11/57



Linear Program (LP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable

◦ Yields lower bounds to the original MILP

11/57



Linear Program (LP)

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Rn .

I c P Rn the objective coefficients
I A P Rm×n the constraint coefficient matrix
I b P Rm the constraint right-hand-sides
I l, u P Rn the lower and upper variable bounds

◦ Polynomially solvable
◦ Yields lower bounds to the original MILP

11/57



LP Relaxation of a MILP

12/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

13/57



Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used to solve MILPs.
It consists of two steps

I Branching - Select variable to split the problem into two

I Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
14/57



Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used to solve MILPs.
It consists of two steps

I Branching - Select variable to split the problem into two

I Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
14/57



Branch-and-Bound (B&B)
B&B (Land et al., 1960) is the widely used to solve MILPs.
It consists of two steps

I Branching - Select variable to split the problem into two

I Bounding - Solve the LP relaxation of resulting problem to obtain
optimization guarantees on the solution

Image source: https://www.gurobi.com/resource/mip-basics/
14/57



LP Relaxation of a MILP

15/57



Branch-and-Bound

16/57



Branch-and-Bound

17/57



Branch-and-Bound

18/57



Branch-and-Bound

19/57



Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

20/57



Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

20/57



Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

20/57



Branch-and-Bound

Branch: Split the LP recursively over a non-integral variable, i.e.
∃i ≤ p | x?i 6P Z

xi ≤ bx?i c ∨ xi ≥ dx?i e.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:

I L = U (optimality certificate)

I L = ∞ (infeasibility certificate)

I L - U < threshold (early stopping)

Note: A time limit is used to ensure termination.

20/57



Branch-and-bound: a sequential process

Sequential decisions:
I variable selection

(branching)
I node selection
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

21/57



Branch-and-bound: a sequential process

Sequential decisions:
I variable selection

(branching)
I node selection
I cutting plane selection
I primal heuristic selection
I simplex initialization
I . . .

21/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

22/57



Branching Policy

It is also called as variable selection policy.

Policy Objective: Given a B&B node i.e. MILP, select a variable
i ≤ p | x∗i 6P Z so that the final size of the tree is minimum (a proxy
for running time).

23/57



A gold standard: Strong Branching (impractical)

Strong branching1: one-step forward looking (greedy)
I solve both LPs for each candidate variable
I select the variable resulting in tightest relaxation
+ small trees
− computationally expensive

1D. Applegate et al. (1995). Finding cuts in the TSP. Tech. rep. DIMACS;
J. Linderoth et al. (May 1999). A Computational Study of Search Strategies
for Mixed Integer Programming.

24/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP
I Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ dx∗i e constraint
I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP

I Denote L+i as the value of LP relaxation of the MILP after
adding xi ≥ dx∗i e constraint

I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP
I Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ dx∗i e constraint

I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP
I Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ dx∗i e constraint
I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP
I Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ dx∗i e constraint
I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



A gold standard: Strong Branching (impractical)

Strong branching score for a variable i at a node n

I Let L be the value of LP relaxation of the MILP
I Denote L+i as the value of LP relaxation of the MILP after

adding xi ≥ dx∗i e constraint
I Similarly, denote L−i for the other half

Strong branching score

scoreSB,i = max(L− L+i , ε)×max(L− L−i , ε)

Strong branching decision

i?SB = argmax
i

scoreSB,i

25/57



Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)
I solve both LPs for each candidate variable
I pick the variable resulting in tightest relaxation
+ small trees
− computationally expensive

Pseudo-cost branching (PB): backward looking
I keep track of tightenings in past branchings
I pick the most promising variable
+ very fast, almost no computations
− cold start

Reliability pseudo-cost branching (RPB): best of both worlds
I compute SB scores at the beginning
I gradually switches to pseudo-cost (+ other heuristics)
+ best overall solving time trade-off (on MIPLIB)

26/57



Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)
I solve both LPs for each candidate variable
I pick the variable resulting in tightest relaxation
+ small trees
− computationally expensive

Pseudo-cost branching (PB): backward looking
I keep track of tightenings in past branchings
I pick the most promising variable
+ very fast, almost no computations
− cold start

Reliability pseudo-cost branching (RPB): best of both worlds
I compute SB scores at the beginning
I gradually switches to pseudo-cost (+ other heuristics)
+ best overall solving time trade-off (on MIPLIB)

26/57



Expert branching rules: state-of-the-art

Strong branching: one-step forward looking (greedy)
I solve both LPs for each candidate variable
I pick the variable resulting in tightest relaxation
+ small trees
− computationally expensive

Pseudo-cost branching (PB): backward looking
I keep track of tightenings in past branchings
I pick the most promising variable
+ very fast, almost no computations
− cold start

Reliability pseudo-cost branching (RPB): best of both worlds
I compute SB scores at the beginning
I gradually switches to pseudo-cost (+ other heuristics)
+ best overall solving time trade-off (on MIPLIB)

26/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

27/57



Learning to branch

Figure: Application specific distribution

Objective:
Given a distribution of problem
sets, find a branching policy that
yields a shortest tree on an average.
Exploits statistical
correlation across problem sets.

28/57



Learning to branch
Objective: Given a dataset of MILPs
I learn an inexpensive function f

I that imitates strong branching decisions (computationally
expensive)

i?SB = argmax
iPC

scoreSB,i i?f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ
L(fθ(MILP), i?SB)

Well studied problem (not an exhaustive list)
I Khalil et al., 2016 =⇒ "online" imitation learning
I Balcan et al., 2018 =⇒ theoretical results
I Gasse et al., 2019 =⇒ offline imitation learning using GCNN

29/57



Learning to branch
Objective: Given a dataset of MILPs
I learn an inexpensive function f

I that imitates strong branching decisions (computationally
expensive)

i?SB = argmax
iPC

scoreSB,i i?f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ
L(fθ(MILP), i?SB)

Well studied problem (not an exhaustive list)
I Khalil et al., 2016 =⇒ "online" imitation learning
I Balcan et al., 2018 =⇒ theoretical results
I Gasse et al., 2019 =⇒ offline imitation learning using GCNN

29/57



Learning to branch
Objective: Given a dataset of MILPs
I learn an inexpensive function f

I that imitates strong branching decisions (computationally
expensive)

i?SB = argmax
iPC

scoreSB,i i?f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ
L(fθ(MILP), i?SB)

Well studied problem (not an exhaustive list)
I Khalil et al., 2016 =⇒ "online" imitation learning
I Balcan et al., 2018 =⇒ theoretical results
I Gasse et al., 2019 =⇒ offline imitation learning using GCNN

29/57



Learning to branch
Objective: Given a dataset of MILPs
I learn an inexpensive function f

I that imitates strong branching decisions (computationally
expensive)

i?SB = argmax
iPC

scoreSB,i i?f = argmax
iPC

scorefθ,i ,

where s ifθ is the score for i ≤ p variable as estimated by fθ.

θ∗ = argmin
θ
L(fθ(MILP), i?SB)

Well studied problem (not an exhaustive list)
I Khalil et al., 2016 =⇒ "online" imitation learning
I Balcan et al., 2018 =⇒ theoretical results
I Gasse et al., 2019 =⇒ offline imitation learning using GCNN

29/57



Learning to branch: SVMs

Khalil et al., 2016 uses Support Vector Machines (SVM) to imitate
the strong branching policy through learning-to-rank framework
+ adapts to the problem instance instead of the distribution
+ computationally inexpensive once the SVM weights are learned
− less representational power as compared to GNNs

Model inputs
Inputs to the SVM model are
hand-designed features: X

30/57



Learning to branch: SVMs

Khalil et al., 2016 uses Support Vector Machines (SVM) to imitate
the strong branching policy through learning-to-rank framework
+ adapts to the problem instance instead of the distribution
+ computationally inexpensive once the SVM weights are learned
− less representational power as compared to GNNs

Model inputs
Inputs to the SVM model are
hand-designed features: X

30/57



Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy
− requires GPUs for best running times

Model inputs
Inputs to the GNN is a
bipartite-representation of MILP: G

31/57



Learning to branch: GNNs

Gasse et al., 2019 uses Graph Neural Networks to imitate the
strong branching policy through classification framework
+ superior representation power
+ best overall accuracy
− requires GPUs for best running times

Model inputs
Inputs to the GNN is a
bipartite-representation of MILP: G

31/57



GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )
I cj : constraint features (right-hand-side, LP slack. . . )
I ei ,j : non-zero coefficients in A

32/57



GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )

I cj : constraint features (right-hand-side, LP slack. . . )
I ei ,j : non-zero coefficients in A

32/57



GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )
I cj : constraint features (right-hand-side, LP slack. . . )

I ei ,j : non-zero coefficients in A

32/57



GNNs: Bipartite Representation of MILPs

Natural representation : variable / constraint bipartite graph

argmin
x

c>x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0
e1,0

e2,1

I vi : variable features (type, coef., bounds, LP solution. . . )
I cj : constraint features (right-hand-side, LP slack. . . )
I ei ,j : non-zero coefficients in A

32/57



Outline

Problem formulation
Discrete Optimization
Branch-and-Bound
The Branching Problem
Learning to branch
Existing MILP Solvers

Our approach: Hybrid Models

Conclusion

33/57



MILP Solvers

MILP solvers do not use GPUs.
Use of GNNs can get infeasible in the following scenarios
I No GPUs: It will be infeasible to incorporate GNNs as a

branching policy in any of the available solvers
I Parallel MILP solving: As a single GPU can only fit a limited

number of GNNs, when several 100s of MILPs need to be
solved in parallel, GNNs can get infeasible

34/57



Outline

Problem formulation

Our approach: Hybrid Models
Model Architecture
Training Protocols

Conclusion

35/57



Data Extraction

Figure: Data extraction strategies: bipartite graph representation G at every node (expensive); candidate
variable features X at every node (cheap); bipartite graph at the root node and variable features at tree
node (hybrid).

36/57



Outline

Problem formulation

Our approach: Hybrid Models
Model Architecture
Training Protocols

Conclusion

37/57



Model Architecture

38/57



Model Architecture: CONCAT

Perez et al., 2018 first proposed FiLM for visual question answering task 39/57



Model Architecture: FiLM

Perez et al., 2018 first proposed FiLM for visual question answering task
40/57



Model Architecture: HyperSVM

Perez et al., 2018 first proposed FiLM for visual question answering task
41/57



Model Architecture

CO
M
Ps

M
LP
s

Hy
pe
rS
VM

CO
NC
AT
/F
iLM

GN
N

Expressivity

Computations

42/57



Model Architecture

CO
M
Ps

M
LP
s

Hy
pe
rS
VM

CO
NC
AT
/F
iLM

GN
N

Expressivity
Computations

42/57



Model Architecture: Performance

End-to-end training

cauctions
36

38

40

42

44

46

To
p-

1 
Ac

cu
ra

cy

facilities60

62

64

66

68

indset
46

48

50

52

54

56

58

60

setcover40

42

44

46

48

50

52

54

GNN COMP MLP CONCAT FiLM HyperSVM HyperSVM-FiLM

Figure: Test accuracy of the different models, with a simple e2e training protocol.

43/57



Outline

Problem formulation

Our approach: Hybrid Models
Model Architecture
Training Protocols

Conclusion

44/57



Training Protocols

To enhance the generalization power of the learned models on the
bigger instances

45/57



Training Protocols: Loss weights

A good decision closer to the root node is more important than the
ones far away from it.

Table: Effect of different sample weighting schemes on combinatorial auctions (big) instances, with a
simple MLP model. z P [0, 1] is the ratio of the depth of the node and the maximum depth observed in
a tree.

Type Weighting scheme Nodes Wins

Constant 1 9678 10/60
Exponential decay e−0.5z 9793 10/60
Linear (e−0.5 − 1) ∗ z + 1 9789 12/60
Quadratic decay (e−0.5 − 1) ∗ z2 + 1 9561 14/60
Sigmoidal (1+ e−0.5)/(1+ ez−0.5) 9534 14/60

46/57



Training Protocols: Knowledge Distillation

Knowledge distillation (KD):2 Use the output of an expert GNN
from Gasse et al., 2019 as a target for the model.
KD reweights the samples so that the student doesn’t attempt to
sharply classify samples that even the teacher didn’t succeed with
(i.e. the logits have higher entropy for the more difficult
samples) Phuong et al., 2019.

Table: Test accuracy of FiLM, using different training protocols.

cauctions facilities indset setcover

Pretrained GNN 44.12 ± 0.09 65.78 ± 0.06 53.16 ± 0.51 50.00 ± 0.09
e2e 44.31 ± 0.08 66.33 ± 0.33 53.23 ± 0.58 50.16 ± 0.05
e2e & KD 44.10 ± 0.09 66.60 ± 0.21 53.08 ± 0.3 50.31 ± 0.19

2G. Hinton et al. (2015). Distilling the knowledge in a neural network.
47/57



Training Protocols: Auxiliary Task

Auxiliary Task (AT): No additional data requied. We force the
variable representations to be far apart from each other.
I ED : Maximum distance between these representations in

euclidean space
I MHE3 : Uniform distribution of these representations over a

unit hypersphere

Table: Test accuracy of FiLM, using different training protocols.

cauctions facilities indset setcover

Pretrained GNN 44.12 ± 0.09 65.78 ± 0.06 53.16 ± 0.51 50.00 ± 0.09
e2e 44.31 ± 0.08 66.33 ± 0.33 53.23 ± 0.58 50.16 ± 0.05
e2e & KD 44.10 ± 0.09 66.60 ± 0.21 53.08 ± 0.3 50.31 ± 0.19
e2e & KD & AT 44.56 ± 0.13 66.85 ± 0.28 53.68 ± 0.23 50.37 ± 0.03

3W. Liu et al. (2018). Learning towards minimum hyperspherical energy.
48/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)
Finally, the learned models are used as a branching policy in SCIP
solver4.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

4A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

49/57



B&B Performance (Runtime)

Finally, the learned models are used as a branching policy in SCIP
solver5.

Hybrid models have a better runtime performance on average than
other baselines as evaluated on CPU only machines.

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 42.5 1 / 60 13 313.3 0 / 59 75 997.2 0 / 51 50
PB 31.4 4 / 60 139 177.7 4 / 60 384 712.6 3 / 56 309
RPB 36.9 1 / 60 23 214.0 1 / 60 152 794.8 2 / 54 99
COMP 30.4 3 / 60 120 172.5 4 / 60 347 633.4 6 / 57 294
GNN 39.2 0 / 60 112 209.8 0 / 60 314 748.8 0 / 54 286

FiLM (ours) 24.7 51 / 60 109 136.4 51 / 60 325 531.7 46 / 57 295
GNN 28.9 – / 60 112 150.1 – / 60 314 628.1 – / 56 286

Capacitated Facility Location

5A. Gleixner et al. (July 2018). The SCIP Optimization Suite 60. Technical
Report. Optimization Online

50/57



B&B Performance (Runtime)

51/57



B&B Performance (Optimality Gap)

Hybrid models also have the least optimality gap at the end of the time
limit as compared to other baselines as evaluated on CPU only machines.

Table: Mean optimality gap (lower the better) of commonly unsolved “big" instances (number of such
instances in brackets).

setcover (33) indset (39)

FSB 0.1709 0.0755

PB 0.0713 0.0298
RPB 0.0628 0.0252
COMP 0.0740 0.0252
GNN 0.1039 0.0341
FiLM 0.0597 0.0187

52/57



Runtime performance

Figure: Cumulative time cost of different branching policies: (i) the default internal rule RPB of the
SCIP solver; (ii) a GNN model (using a GPU or a CPU); and (iii) our hybrid model. Clearly the GNN
model requires a GPU for being competitive, while our hybrid model does not. (Measured on a
capacitated facility location problem, medium size).

53/57



Outline

Problem formulation

Our approach: Hybrid Models

Conclusion

54/57



Conclusion

I We propose hybrid models as branching policies that can be
easily integrated with any discrete optimization solvers without
needing any access to GPU machines

I We explored various training protocols to enhance both the
Top-1 accuracy as well as the runtime B&B performance of
these hybrid models

I We recommend training protocol as FiLM (e2e & KD & AT)
only when these models have significantly better accuracy than
FiLM (e2e & KD).

55/57



Conclusion

I We propose hybrid models as branching policies that can be
easily integrated with any discrete optimization solvers without
needing any access to GPU machines

I We explored various training protocols to enhance both the
Top-1 accuracy as well as the runtime B&B performance of
these hybrid models

I We recommend training protocol as FiLM (e2e & KD & AT)
only when these models have significantly better accuracy than
FiLM (e2e & KD).

55/57



Conclusion

I We propose hybrid models as branching policies that can be
easily integrated with any discrete optimization solvers without
needing any access to GPU machines

I We explored various training protocols to enhance both the
Top-1 accuracy as well as the runtime B&B performance of
these hybrid models

I We recommend training protocol as FiLM (e2e & KD & AT)
only when these models have significantly better accuracy than
FiLM (e2e & KD).

55/57



Open questions
I scaling to the real-world problems
I reinforcement learning: still a lot of challenges
I interpretation: which variables are chosen? Why ?
I learning in collaboration with other heuristics, e.g, cut

selection, node selection, etc.
I meta-learning to transfer to unseen instances

Paper: https:
//arxiv.org/abs/2006.15212

Code: https://github.com/
pg2455/Hybrid-learn2branch Slides: www.pgupta.info/talks

QR Codes generated via https://www.qr-code-generator.com/
56/57

https://arxiv.org/abs/2006.15212
https://arxiv.org/abs/2006.15212
https://github.com/pg2455/Hybrid-learn2branch
https://github.com/pg2455/Hybrid-learn2branch
www.pgupta.info/talks
https://www.qr-code-generator.com/


Hybrid Models for Learning to Branch

Thank you!

Prateek Gupta∗, Maxime Gasse, Elias B. Khalil,
M. Pawan Kumar, Andrea Lodi, Yoshua Bengio

57/57


	Problem formulation
	Discrete Optimization
	Branch-and-Bound
	The Branching Problem
	Learning to branch
	Existing MILP Solvers

	Our approach: Hybrid Models
	Model Architecture
	Training Protocols

	Conclusion
	

